Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Wildlife Society Bulletin ; n/a(n/a):e1262, 2022.
Artículo en Inglés | Wiley | ID: covidwho-1797746

RESUMEN

Preventing wildlife disease outbreaks is a priority for natural resource agencies, and management decisions can be urgent, especially in epidemic circumstances. With the emergence of SARS-CoV-2, wildlife agencies were concerned whether the activities they authorize might increase the risk of viral transmission from humans to North American bats, but had a limited amount of time in which to make decisions. We describe how decision analysis provides a powerful framework to analyze and reanalyze complex natural resource management problems as knowledge evolves. Coupled with expert judgment and avenues for the rapid release of information, risk assessment can provide timely scientific information for evolving decisions. In April 2020, the first rapid risk assessment was conducted to evaluate the risk of transmission of SARS-CoV-2 from humans to North American bats. Based on the best available information and relying heavily on expert judgment, the risk assessment found a small possibility of transmission during summer work activities. Following that assessment, additional knowledge and data emerged, such as bat viral challenge studies, that further elucidated the risks of human-to-bat transmission and culminated in a second risk assessment in the fall of 2020. We updated the first SARS-CoV-2 risk assessment with new management alternatives and new estimates of little brown bat (Myotis lucifugus) susceptibility, using findings from the fall 2020 assessment and other empirical studies. We found that new knowledge led to an 88% decrease in the median number of bats estimated to be infected per 1,000 encountered when compared to earlier results. The use of facemasks during, or a negative COVID-19 test or vaccination prior to, bat encounters further reduced those risks. Using a combination of decision analysis, expert judgment, rapid risk assessment, and efficient modes of information distribution, we provided timely science-based support to decision makers for summer bat work in North America.

2.
Front Public Health ; 9: 627654, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1241212

RESUMEN

The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.


Asunto(s)
Animales Salvajes , COVID-19 , Animales , Regiones Árticas , Ecosistema , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Estados Unidos , Zoonosis/epidemiología
3.
Conserv Sci Pract ; 3(6): e410, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1159281

RESUMEN

The virus that causes COVID-19 likely evolved in a mammalian host, possibly Old-World bats, before adapting to humans, raising the question of whether reverse zoonotic transmission to bats is possible. Wildlife management agencies in North America are concerned that the activities they authorize could lead to transmission of SARS-CoV-2 to bats from humans. A rapid risk assessment conducted in April 2020 suggested that there was a small but significant possibility that SARS-CoV-2 could be transmitted from humans to bats during summer fieldwork, absent precautions. Subsequent challenge studies in a laboratory setting have shed new information on these risks, as has more detailed information on human epidemiology and transmission. This inquiry focuses on the risk to bats from winter fieldwork, specifically surveys of winter roosts and handling of bats to test for white-nose syndrome or other research needs. We use an aerosol transmission model, with parameter estimates both from the literature and from formal expert judgment, to estimate the risk to three species of North American bats, as a function of several factors. We find that risks of transmission are lower than in the previous assessment and are notably affected by chamber volume and local prevalence of COVID-19. Use of facemasks with high filtration efficiency or a negative COVID-19 test before field surveys can reduce zoonotic risk by 65 to 88%.

4.
Emerg Infect Dis ; 27(4): 1015-1022, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1150678

RESUMEN

The ongoing global pandemic caused by coronavirus disease has once again demonstrated the role of the family Coronaviridae in causing human disease outbreaks. Because severe acute respiratory syndrome coronavirus 2 was first detected in December 2019, information on its tropism, host range, and clinical manifestations in animals is limited. Given the limited information, data from other coronaviruses might be useful for informing scientific inquiry, risk assessment, and decision-making. We reviewed endemic and emerging infections of alphacoronaviruses and betacoronaviruses in wildlife, livestock, and companion animals and provide information on the receptor use, known hosts, and clinical signs associated with each host for 15 coronaviruses detected in humans and animals. This information can be used to guide implementation of a One Health approach that involves human health, animal health, environmental, and other relevant partners in developing strategies for preparedness, response, and control to current and future coronavirus disease threats.


Asunto(s)
Coronaviridae/aislamiento & purificación , Infecciones por Coronavirus/veterinaria , Reservorios de Enfermedades/veterinaria , Zoonosis/virología , Alphacoronavirus/aislamiento & purificación , Animales , Animales Salvajes , Betacoronavirus/aislamiento & purificación , COVID-19/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Brotes de Enfermedades , Reservorios de Enfermedades/virología , Especificidad del Huésped , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Pandemias , SARS-CoV-2 , Zoonosis/epidemiología
5.
PLoS Pathog ; 16(9): e1008758, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-742547

RESUMEN

The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (ß-CoVs), free-ranging bats are a key group of concern for spillover from humans back to wildlife. Here, we review the diversity and natural host range of ß-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of ß-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations.


Asunto(s)
Animales Salvajes/virología , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Animales , COVID-19 , Quirópteros/virología , Genoma Viral/genética , Especificidad del Huésped/fisiología , Humanos , Pandemias , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA